Fundamental of $O D E_{S}$

- Last time:
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is locally Lip. if for all compact subsets $D \subset \mathbb{R}^{n}, \exists L>0$ sit.

$$
\|f(x)-f(y)\| \leqslant L\|x-y\| \quad \forall x, y \in D
$$

- It is globally Lip. if the inequality is true every where

$$
\|f(x)-f(y)\| \leqslant L\|x-y\| \quad \forall x, y \in \mathbb{R}^{n}
$$

- If $f(t, x)$ is also a function of time, then $f:\left[t_{0}, t_{1}\right] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is locally Lip in x uniformly on $t \in\left[t_{0}, t_{1}\right]$ if \forall compact subsets $D \subset \mathbb{R}^{n}$

$$
\begin{array}{ll}
\|f(t, x)-f(t, y)\| \leqslant L \| x-y U & \forall x, y \in D \\
& \forall t \in\left[t_{0}, t_{1}\right]
\end{array}
$$

-globally Lip $\leadsto U f(t, x)-f(x, y)\|\leqslant L\| x-y \| \quad \forall x y \in \mathbb{R}^{n}$

$$
\forall t \in\left[t_{0}, t_{1}\right]
$$

Thu: (Existence and uniqueness)
Consider DDE $\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}$
Assume ordinary differential equation

- f is piecewise continuenes in t.
- lo cally Lip. in x uniformly in $t \in\left[t_{0}\right)^{\left.t_{i}\right]}$ would depend on x_{0}
Then, for all $x_{0} \in \mathbb{R}^{n}, \exists \delta>0$ st. there exists a unique solution to $(*)$ on the interval $\left[t_{0}, t_{0}+\delta\right]$
- If $f(t, x)$ is globally Lip. unit in $t \in\left[t_{0}, \infty\right)$ Then, the solution exists for all time.

Remark: [Khalil footnote 3 pp 88]
-If we only care about existence, not uniqueress, then continuity of $f(x)$ is enough.

$$
\text { egg. } f(x)=\sqrt{x}
$$

proof:
contraction mapping theorem
-we will use CMT to prove existence and uniqueness

- we have to write the equation as a fixed point problem.
- Integrate the ODE to get

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \quad \forall t \in\left[t_{0}, t_{1}\right]
$$

- Consider the space $\chi=C\left(\left[t_{0}, t_{1}\right] ; \mathbb{R}^{n}\right)$
- Consider the map with $11 \cdot U_{\infty}$-norm
$P: X \rightarrow x \quad \begin{aligned} & \text { funct. } \\ & \text { funct. }\end{aligned}$

$$
\begin{array}{r}
(P x)(t) \triangleq x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \\
\forall t \in\left[t_{0}, t_{1}\right]
\end{array}
$$

- The solution to the ODE is a fixed point of

$$
x=p x
$$

- we will use CMT to paine existence and uniqueress of solution.
- Condition for CNT
(I) Define a closed subset $\delta \subseteq X$
(II) $P(x) \in S$ for all $x \in S$
(III) $\|P(x)-P(y)\| \leqslant p\|x-y\|$
where $\rho \in(0,1)$
- start with (T) to be determined later

$$
S=\left\{X \in C\left(\left[t_{0}, t_{0}+\delta\right] ; \mathbb{R}^{n}\right) \mid\left\|x-x_{0}\right\|_{\infty} \leqslant r\right\}
$$

S is closed \rightarrow exercise

ID need to shav if $x \in S \Rightarrow p x \in S$ equivalendly

$$
\text { if }\left\|x(t)-x_{0}\right\| \leqslant r \quad \Rightarrow\left\|P x(t)-x_{0}\right\| \leqslant r
$$

for all $t \in\left[t_{0}, t_{0}+\delta\right]$ for all $t \in\left[t_{0}, t_{0}+\delta\right]$

$$
\begin{aligned}
&- p x(t)-x_{0}=\int_{t_{0}}^{t} f(s, x(s)) d s \\
&=\int_{t_{0}}^{t}\left[f(s, x(s)]-f\left(s, x_{0}\right)+f\left(s, x_{0}\right)\right] d s \\
& \Rightarrow\left\|P R(t)-x_{0}\right\| \leqslant \int_{t_{0}}^{t}\left\|f(s, x(s))-f\left(s, x_{0}\right)\right\|+\left\|f\left(s, x_{0}\right)\right\| d s
\end{aligned}
$$

(1) f is piccewise contionums in $t \Rightarrow$ itis boundel

$$
\Rightarrow \max _{t \in[t, t)]}\left\|f\left(t, x_{0}\right)\right\|=h<\infty
$$

(2) $U X(t)-x_{0} \| \leqslant r$ and f is locally Lip. \Rightarrow

$$
\exists L>0 \text { s.t. }\left\|f\left(t_{1} x(t)\right)-f\left(t, x_{0}\right)\right\| \leqslant t\left\|x(t)-x_{0}\right\| \leqslant \downarrow r
$$

$$
\begin{aligned}
\Rightarrow\left\|P X(t)-x_{0}\right\| & \leqslant \int_{t_{0}}^{t}(\perp n+h) d s \\
& \leqslant(-n+h) \delta
\end{aligned}
$$

- So, in order to ensure $P X \in S$, we need

$$
\begin{aligned}
& (1 r+h) \delta \leqslant r \\
\Rightarrow & \delta<\frac{r}{1-+h}
\end{aligned}
$$

(III) P is contraction

$$
\begin{aligned}
&|(P X)(t)-(P Y)(t)|=1 \int_{t_{0}}^{t} f\left(s, x(s)-f(s, Y(s))^{\prime} d s\right. \\
& \leqslant \int_{t_{0}}^{t} \mid f(s, X(s))-f(s, y(s) \mid d s \\
& \text { Lip } \\
& \leqslant \int_{t_{0}}^{t} 1 \frac{|X(s)-Y(s)|}{\leqslant\|x-Y\|_{\infty}} d s \\
& \leqslant L\|x-Y\|_{\infty} \delta
\end{aligned}
$$

$$
\Rightarrow \quad\|P x-P Y\|_{\infty} \leqslant L \delta\|x-Y\|_{\infty}
$$

- Ingrder to have contraction $\rightarrow L \delta<1$

$$
\Rightarrow \delta<\frac{1}{2}
$$

- Combining the two conditims for δ

$$
\delta<\min \left\{\frac{1}{1}, \frac{r}{1 r+n}\right\}
$$

- Then, CMT applies, Z! solution on S or on the interval $\left[t_{0}, t_{0}+\delta\right]$
(I) all trajectories inside the ball is closed set $\rightarrow S$
 in ball if $\delta \leqslant \frac{r}{1 r+h}$, L is Lip. Canst. for ball
(iii) Contraction if $\delta \leqslant \frac{1}{L}$
proof of gbbell existence:
- why cant we conclude glotiall existence?
- we start at $x_{0} \rightarrow$ construct Thesolution for [to, $\left.t_{0}+d_{0}\right]$ Then wetake $X\left(t_{0}+\delta_{n}\right)$ as the new initial candixim and construct solution for $\left[t_{0} 4 \delta_{0}, t_{0}+d_{0}+d_{1}\right]$ and so on...

- The issue is that $t_{0}+\delta_{0}+\delta_{1}+\delta_{2}+\delta_{3}+\cdots \nrightarrow \infty$ might not extend to ∞
eng. $\delta_{k}=\frac{1}{2^{k}} \Rightarrow t_{0}+\sum_{k} \delta_{k} \leqslant t_{0}+1$
- but if f is globally tip. I universal Lip. Constant L
- Two conditions:

$$
\begin{aligned}
& \delta \leqslant \frac{1}{L} \\
& \delta \leqslant \frac{r}{1 r_{+} h} \xrightarrow{r \rightarrow \infty} \frac{1}{L}
\end{aligned}
$$

\Rightarrow we can take $\delta_{0}=\delta_{1}=\delta_{2}=\ldots=\frac{1}{L}$
\Rightarrow solution can be extended indefinitoly.
Remark: if me knows (aprioni) that the Solution is bounded, then locally Lip. is enough to ensure global existence

- In otter consols, if no global solutim, then there should be finire-time blow-up like $\dot{x}=x^{2}$

Example: $\dot{x}=-x^{3}, \quad X(0)=X_{0}$

$$
\Rightarrow f(x)=x^{3} \Rightarrow f_{\text {lo call Lip. }}^{f^{\prime}(x)=3 x^{2}}
$$

\Rightarrow local existence
But, we can argue that the Solution is always bounded.

\Rightarrow by remark, we have global existence in fact, explicit form is known

$$
X(t)=\operatorname{sgn}\left(x_{0}\right) \sqrt{\frac{x_{0}^{2}}{1+2\left(t-t_{0}\right) x_{0}^{2}}}
$$

Example:

$$
\dot{x}(t)=\frac{A(t) x(t)+g(t)}{f(t, x)}
$$

where $\underbrace{A(t)}_{\text {matrix }}, \underbrace{g(t)}_{\text {veter }}$ are piecewise cont. int
\Longrightarrow over any finite interval, $A(t)$ and $g(t)$ is bounded.
$\Rightarrow\|A(t)\| \leqslant a$ where $\|\cdot\|$ is any induced matrix norm.

$$
\begin{aligned}
\|f(t, x)-f(t, y)\| & =\|A(t)\|(x-y) \| \\
& \leqslant\|A(t)\|\|x-y\| \\
& \leqslant a\|x-y\| \quad \forall x y \in \mathbb{R}^{n}
\end{aligned}
$$

\Rightarrow global Lip.
\Leftrightarrow Gl Solution on $\left[t_{0}, t_{1}\right]$
$\Rightarrow t_{1}$ can be corbitrary large.

- Norm of matrices induced from vector norm.
- Consider norm $\|x\|_{p}=\left[x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p}\right]^{\frac{1}{p}}$ on $x \in \mathbb{R}^{n}$
- Consider a $n \times n$ matrix A.
- The norm of A induced from $U \cdot U_{p}$ is

$$
\|A x\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}
$$

- By definition, we have the inequality

$$
\|A \times\|_{p} \leqslant\|A\|_{p}\|x\|_{p}
$$

- Special cases:

$$
\begin{aligned}
& \|A\|_{1}=\max _{k j \leqslant n} \sum_{i=1}^{n}\left|A_{i j}\right| \quad \text { maximum absolute } \\
& \|A\|_{\infty}=\max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n}\left|A_{i j}\right| \text { max abs. mow sum }
\end{aligned}
$$

$$
\|A\|_{2}=\sqrt{\lambda_{\text {max }}\left(A^{\top} A\right)}
$$

maximum singular value

- Important inequality

$$
\|A\|_{2} \leqslant \underbrace{\sqrt{\operatorname{tr}\left(A A^{\top}\right)}}_{\text {Frobimius-norm }}=\sqrt{\sum_{i j} A_{i j}^{2}}
$$

